Columns to Include:
| Date | Order ID | Customer Name | Product Name | Category | Units Sold | Unit Price ($) | Subtotal ($) | Tax ($) | Shipping ($) | Total ($) | Profit ($) | Channel |
|------------|------------|---------------|--------------|----------|------------|----------------|--------------|---------|--------------|-----------|------------|---------|
Formulas:
=Units Sold * Unit Price
=Subtotal + Tax + Shipping
Profit: =Subtotal - COGS
(COGS = Cost of Goods Sold, if available).
Example Data:
| Date | Order ID | Customer Name | Product Name | Category | Units Sold | Unit Price ($) | Subtotal ($) | Tax ($) | Shipping ($) | Total ($) | Profit ($) | Channel |
|------------|----------|---------------|--------------|-----------|------------|----------------|--------------|---------|--------------|-----------|------------|------------|
| 01/01/2025 | 10001 | John Doe | Hoodie | Apparel | 2 | 25 | 50 | 3.50 | 5 | 58.50 | 20 | Instagram |
| 01/02/2025 | 10002 | Jane Smith | Coffee Mug | Home Goods| 1 | 15 | 15 | 1.05 | 4 | 20.05 | 7 | Website |
Drag fields into the table:
Generate Insights:
=SUM(Total Column)
=SUM(Total Column)/COUNT(Order ID Column)
Profit Margin: =(Total Profit / Total Sales) * 100
.
Add Charts:
Customer Lifetime Value (CLV):
| Customer Name | Total Orders | Total Spend ($) | Avg Spend per Order ($) |
|---------------|--------------|------------------|--------------------------|
| John Doe | 3 | 150 | 50 |
Formulas:
=SUMIF(Customer Column, "Customer Name", Total Column)
=Total Spend / Total Orders
. Track Repeat Customers:
| Channel | Total Orders | Total Sales ($) | Avg Order Value ($) | ROI (%) |
|-------------|--------------|------------------|----------------------|------------|
| Website | 50 | 5,000 | 100 | 200% |
| Instagram | 30 | 3,000 | 100 | 150% |
=((Total Sales - Ad Spend) / Ad Spend) * 100
. Track Inventory Levels:
| Product Name | Starting Stock | Units Sold | Remaining Stock |
|--------------|----------------|------------|-----------------|
| Hoodie | 100 | 20 | =Starting Stock - Units Sold |
Low Stock Alerts:
< 10
). Predict sales based on historical data:
=FORECAST.LINEAR(Future Date, Sales Range, Date Range)
.
Set Up "What-If" Situations:
Product Inventory and Sales Tracker:
E-Commerce Dashboard:
Use Power Query for cleaning and automating data refresh.
Integrate with Payment Gateways:
Export reports from Stripe, PayPal, or Square to match payments with orders.
Secure Your Data:
Protect sensitive customer information with password protection:
Go to File > Info > Protect Workbook.
Back Up Regularly: